

Subject with Code: Utilization of Electrical Power (16EE238)

Year &Sem: IV-B.Tech&II-Sem

Course & Branch: B.Tech - EEE

Regulation: R16

UNIT –I ILLUMINATION

1	a) Draw and explain the operation of sodium vapour lamp with neat diagram and enumerate its advantages and disadvantages.	[L1][CO1]	[6M]
	b)Alamphavingauniformcpof100inalldirectionisprovidedwithareflectorwhichdirects 60% of the light uniformly onto a circular area of 10 m diameter. The lampishung 5 m above the area. Calculate the illumination at the center.	[L2][CO1]	[6M]
2	a) Stateandexplainlawsofillumination.	[L1][CO1]	[6M]
	 b) Sixlampsareusedtoilluminateacertainroom. Iftheluminous efficiencyofeachlamp is 12lumens/wattandthelampshavetoemitatotalluxof10,000lumens,calculate (i)Themeansphericalluminousintensity (ii)Thecostofenergyconsumedin3hoursifthecharge forelectricalenergyis50paiseperunit. 	[L3][CO1]	[6M]
3	a)Ifalampof200cpisplaced1mbelowaplanemirrorwhichreflects90%oflightfalling onit,determineilluminationatapoint3 mawayfromthefootofthelampwhichishung4maboveground.	[L3][CO1]	[6M]
	b)Explainwithsketchtheprinciple and operation of incandescent lampande numerates its advantages and disadvantages.	[L1][CO1]	[6M]
4	a)A250CPlampishung4mabovethecenterofacircularareaof6mdiameter.Calculatethe illuminationatthe(i)Centre ofarea.(ii)Peripheryofthearea.(iii)Averageillumination	[L3][CO1]	[6M]
	b)Explainthevariousfactorsto betakeninto accountfor designingschemesfor. (i)Factorylighting(ii)Streetlighting	[L2][CO1]	[6M]
5	Amachineshop40m×20mistohaveanilluminationof160luxonworkingplane.Thelampsar emountedon6mabovetheworkingplane.Givethelayoutofasuitableinstallation. a)Usingfilamentlamp. b)Using50wattsfluorescentlamp.Assumenecessarydata.	[L3][CO1]	[12M]
6	a) Write short notes on polar curves and explain the Rousseau's construction for calculating MSCP of lamp.	[L1][CO1]	[6M]
	b) A filament lamp of 500W is suspended at a height of 4.5 m above the working plane and gives uniform illumination over an area of 6 m diameter. Assuming an efficiency of the reflector as 70% and efficiency of lamp as 0.8 watt per candle power, determine the illumination on the working plane	[L3][CO1]	[6M]
7	State the laws of illumination. Explain the laws with the help of suitable diagrams and derive an equation of the same.	[L1][CO1]	[12M]
8	a) A room measuring 30m×15m is to be illuminated by 10 lamps and the average illumination is to be 85 lux. Determine the MSCP of each lamp if the utilization and depreciation factors are 0.5 and 0.8 respectively	[L3][CO1]	[6M]
	b) Briefly explain the requirement of good lighting scheme.	[L2][CO1]	[6M]
9	a) Explain with sketch the principle and operation of fluorescent lamp	[L3][C01]	[6M]
-	b) Write short notes on flood lighting	[L2][C01]	[6M]
	write snort notes on a) source of light 2NI b) Define Mean spherical candle power	[L2][CO1]	[3M]
U	c) Define lamp efficiency		[3]VI] [2]VI]
	d) Define space-height ratio		[JIVI] [2]/[]
		[L2][COI]	

UNIT –II

ELECTRICHEATING&WELDING

1	a) Briefly discuss the method of Dielectric heating used in the electric heating.	[L2][CO2]	[6M]
	b) Briefly discuss the applications of resistance heating.	[L2][CO2]	[6M]
2	a) Describe direct and indirect core type furnace with neat sketches	[L2][CO2]	[6M]
	b) Explain application of induction heating	[L3][CO2]	[6M]
3	a) What are the different types of heating? Write advantages of electric heating.	[L1][CO2]	[6M]
	b) A low frequency induction furnace whose secondary voltage is maintained constant	[L3][CO2]	[6M]
	at 10 volts, takes 400 kW at 0.6 pI, when the hearth is full. Assuming the resistance of the secondary to vary inversely as the height of the charge and reactance to remain		
	constant, height up to which the hearth should be filled to obtain maximum heat.		
4	a) Discuss briefly about induction and dielectric heating process	[L2][CO2]	[6M]
	b) A slab of insulating material 150 sq cm in area and 1 cm thick is to be heated by	[L3][CO2]	[6M]
	dielectric heating. The power required is 400 W at 30×106 cps. Materials has		
	permittivity of 5 and power factor of 0.05. Determine voltage necessary		
5	a) Write briefly about ultrasonic welding and defects in welding process.	[L3][CO2]	[6M]
	b) Differentiate between A.C and D.C welding. Discuss about the techniques used for	[L2][CO2]	[6M]
	arc welding.		
6	a) Briefly discuss the welding electrodes of various metals.	[L3][CO2]	[6M]
	b) Explain briefly the types of electric arc welding.	[L3][CO2]	[6M]
7	Explain the different methods of electric welding and their relative advantages	[L3][CO2]	[12M]
8	Discuss the various applications of electrolysis in detail.	[L2][CO2]	[12M]
9	a) Discuss the advantages of reverse current process of electro plating	[L2][CO2]	[6M]
	b) Discuss faraday's laws and applications of electrolysis in detail	[L2][CO2]	[6M]
10	Write short notes on		
	a) Weldingtransformer characteristics.	[L1][CO2]	[3M]
	b) Explain Spot weiding	[L2][CO2]	[3M]
	c) what are various modes of heat transfer?	[L3][CO2]	[3M]
	a) what is electro-deposition?	[L1][CO2]	[3M]

UNIT –III ELECTRIC DRIVES

1	What is an electric drive? What are the different typed of electric drives? Explain.	[L1][CO3]	[12M]
2	What are the factors influencing the choice of electrical drives?	[L1][CO3]	[12M]
3	a).What is the Classification of Electrical Drives?	[L2][CO3]	[6M]
	b). What are the advantages and disadvantages of Electric drives?	[L3][CO3]	[6M]
4	a). How do you select a motor for an industrial application?	[L2][CO3]	[6M]
	b). what are the different Industrial motor load types? Explain.	[L3][CO3]	[6M]
5	What are the starting and running characteristics of electric drives?	[L2][CO3]3	[12M]
6	What are the different Types of Industrial Loads? Explain in detail.	[L3][CO3]	[12M]
7	What are the applications of Electric drives in day to day life?	[L2][CO3]	[12M]
8	What is individual drive, group drive and multi motor drive? Explain with suitable	[L3][CO3]	[12M]
	examples.		
9	What is temperature rise in motor? Derive the equation for Heating of Motor.	[L2][CO3]	[12M]
10	a). What is load equalization?	[L3][CO3]	[6M]
	b). what are the advantages of group drive?	[L3][CO3]	[6M]

R16 UNIT –IV ELECTRIC TRACTION – I

1	a) Compare A.C traction with D.C traction with necessary examples.	[L2][CO4]	[6M]
	b) Explain about the different methods of electric braking systems in the case of	[L3][CO4]	[6M]
	traction.		
2	Discuss the characteristic features of a traction motor for effective traction systems	[L2][CO4]	[12M]
3	a) What are the special features of traction motors?	[L3][CO4]	[4M]
	b) A goods trains weighing 300 tonnes is to be hauled by a locomotive up a gradient of	[L3][CO4]	[8M]
	2% within acceleration of 1 kmphps. Coefficient of adhesion is 20%. Track resistance		
	= 45 W/10n and effect of rotational masses is 15% of dead weight. If axie load is not		
4	a) How the electric traction system is classified? Briefly discuss	II 11[CO4]	[(]]
4	a) now the electric fraction system is classified? Diferry discuss.	[L1][C04]	
	b) A train has schedule speed of 50 km/hr over a level track distance between stations being 1 km. Duration of stop is 20 sec. Assuming braking retardation of 3 km/br/sec	[L3][C04]	[6M]
	and maximum speed 25% greater than average speed calculate acceleration required		
	to run the service.		
5	A train is to run between two stations 1.6 km apart at an average speed of 40 kmph, the	[L3][C04]	[12M]
	run is to be made to a quadrilateral N-T curve. Maximum speed is to be limited to 64		[]
	kmph, acceleration, to 2 kmphps, coasting retardation to 0.16, and braking retardation		
	to 3.2, Determine the duration of a acceleration, coasting and braking periods.		
6	a) Discuss the speed-time curves for urban service.	[L2][CO4]	[6M]
	b) A sub urban electric train has a maximum speed of 70 km/hr. The schedule speed	[L3][CO4]	[6M]
	including a station stop of 30 sec in 45 km/hr. If the acceleration is 1.5 km/hr/sec. Find		
	the value of retardation when the average distance between stops is 600 m.		
7	Describe how Plugging, Rheostatic braking and Regenerative braking are employed	[L2][CO4]	[12M]
	with DC series motor		
ð	a) Discuss the speed-time curves for main line services.	[L2][CO4]	[6M]
ð	a) Discuss the speed-time curves for main line services.b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart.	[L2][CO4] [L3][CO4]	[6M]
ð	a) Discuss the speed-time curves for main line services.b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The	[L2][CO4] [L3][CO4]	[6M] [6M]
8	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. 	[L2][CO4] [L3][CO4]	[6M] [6M]
8 9	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and time. 	[L2][CO4] [L3][CO4] [L3][CO4]	[6M] [6M] [12M]
8 9	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stop is 26 sec. find the schedule speed for a run of 1.5 km. Assume simplified 	[L2][CO4] [L3][CO4] [L3][CO4]	[6M] [6M] [12M]
8 9	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stop is 26 sec, find the schedule speed for a run of 1.5 km. Assume simplified trapezoidal speed time curve 	[L2][CO4] [L3][CO4] [L3][CO4]	[6M] [6M] [12M]
<u>8</u> 9	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stop is 26 sec, find the schedule speed for a run of 1.5 km. Assume simplified trapezoidal speed time curve. With the help of Speed-Time curve, define and explain the importance of following 	[L2][CO4] [L3][CO4] [L3][CO4]	[6M] [6M] [12M]
8 9 10	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stop is 26 sec, find the schedule speed for a run of 1.5 km. Assume simplified trapezoidal speed time curve. With the help of Speed-Time curve, define and explain the importance of following factors in a traction system. 	[L2][CO4] [L3][CO4] [L3][CO4]	[6M] [6M] [12M]
8 9 10	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stop is 26 sec, find the schedule speed for a run of 1.5 km. Assume simplified trapezoidal speed time curve. With the help of Speed-Time curve, define and explain the importance of following factors in a traction system. a. Notching period. 	[L2][CO4] [L3][CO4] [L3][CO4] [L2][CO4]	[6M] [6M] [12M] [3M]
8 9 10	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stop is 26 sec, find the schedule speed for a run of 1.5 km. Assume simplified trapezoidal speed time curve. With the help of Speed-Time curve, define and explain the importance of following factors in a traction system. a. Notching period. b. Free running period. 	[L2][CO4] [L3][CO4] [L3][CO4] [L2][CO4] [L2][CO4] [L2][CO4]	[6M] [6M] [12M] [3M] [3M] [2M]
8 9 10	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stop is 26 sec, find the schedule speed for a run of 1.5 km. Assume simplified trapezoidal speed time curve. With the help of Speed-Time curve, define and explain the importance of following factors in a traction system. a. Notching period. b. Free running period. c. Coasting period. 	[L2][CO4] [L3][CO4] [L3][CO4] [L2][CO4] [L2][CO4] [L2][CO4] [L2][CO4]	[6M] [6M] [12M] [3M] [3M] [3M] [3M]
8 9 10	 a) Discuss the speed-time curves for main line services. b) A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s. An electric train is to have acceleration and breaking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stop is 26 sec, find the schedule speed for a run of 1.5 km. Assume simplified trapezoidal speed time curve. With the help of Speed-Time curve, define and explain the importance of following factors in a traction system. a. Notching period. b. Free running period. c. Coasting period. d. Braking period. 	[L2][CO4] [L3][CO4] [L3][CO4] [L2][CO4] [L2][CO4] [L2][CO4] [L2][CO4]	[6M] [6M] [12M] [3M] [3M] [3M] [3M]

R16 UNIT –V ELECTRIC TRACTION - II

1	Explain the calculations of tractive effort required for train propulsion.	[L2][CO5]	[12M]
2	An electric train has an average speed of 42 km/hr on a level track between stops 1400 m apart. It is accelerated at 1.7 km/hr/sec and it is braked at 3.3 km/hr/sec	[L3][CO5]	[12M]
	Draw the speed-time curve and estimate the specific energy consumption. Assume		
	tractive resistance as 50 NW/Tonne and allow 10% rotational inertia.		
3	a) Write short notes on specific energy consumption.	[L1][CO5]	[6M]
	b) What factors affect the specific energy consumption?	[L1][CO5]	[6M]
4	a) What is the tractive effort for propulsion of a train on level track?	[L1][CO5]	[6M]
	b) What is the tractive effort for propulsion of a train up and down a gradient?	[L1][CO5]	[6M]
5	An electric train of weight 250 ton has eight motors geared to driving wheels, each	[L3][CO5]	[12M]
	is 85 cm diameter. The tractive resistance is of 50/ton. The effect of rotational		
	inertia is 8% of the train weight, the gear ratio is $4-1$, and the gearing efficiency is		
	85% determine. The torque developed by each motor to accelerate the train to a speed of 50 kmph in 20 s up a gradient of 1 in 200		
6	A train is to run between two stations 1.6 km apart at an average speed of 40 kmph	[] 3][CO5]	[12M]
U	the run is to be made to a quadrilateral N-T curve. Maximum speed is to be limited		
	to 64 kmph, acceleration, to 2 kmphps, coasting retardation to 0.16 , and braking		
	retardation to 3.2, determine the duration of a acceleration, coasting and braking		
-	periods.	11 21(005)	[10] []
7	A 100-ton weight train has a rotational inertia of 10%. This train has to be run	[L3][C05]	[12M]
	The acceleration and the retardation during braking are 2 kmphps and 3 kmphps		
	respectively. The percentage gradient between these two stations is 1% and the		
	train is to move up the incline the track resistance is 50 N/ton, then determine: 1		
	Maximum power at the driving axle. 2. Total energy consumption. 3. Specific		
	energy consumption.		
8	A train weighing 200-ton accelerates uniformly from rest to aspeed of 40 kmph up a	[L3][CO5]	[12M]
	gradient of 1 in 100, the time taken being 30 s. The power is then cut off and train		
	coasts down a uniform gradient of 1 in 1,000 for period of 40 s. When brakes are		
	applied for period of 20 s so as to bring the train uniformly to rest on this gradient		
	Determine:		
	1. The maximum power output from the driving axles.		
	2. The energy taken from the conductor rails in KW-hr assuming an efficiency of 70% Assume tractive resistance to be 45 N/ton at all areads and allow 10% for		
	70%. Assume tractive resistance to be 45 N/ton at all speeds and allow 10% for		
Q	What is coefficient of adhesion? How the value of coefficient of adhesion affects the	[[1][[05]	[12M]
	slipping and skidding of the driving wheels of traction unit?		[1#171]
10	An electric train has quadrilateral speed-time curve as follows: 1. Uniform	[L3][CO5]	[12M]
	acceleration from rest 2 kmphps for 30 s. 2. Coasting for 40 s. 3. Braking period of		
	25 s. The train is moving a uniform down gradient of 1% and the tractive resistance		
	of 50 N/ton. The rotational resistance is 10% of the dead weight, the duration of the		
	stop is 20 s and the overall efficiency of the transmission the gear and the motor as		
	80%. Calculate its schedule speed and specific energy consumption.		

Preparedby:P. CHANDRA SEKHAR